翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

cellular homology : ウィキペディア英語版
cellular homology
In mathematics, cellular homology in algebraic topology is a homology theory for the category of CW-complexes. It agrees with singular homology, and can provide an effective means of computing homology modules.
== Definition ==

If X is a CW-complex with n-skeleton X_ , the cellular-homology modules are defined as the homology groups of the cellular chain complex
:
\cdots \to ,X_) \to ,X_) \to ,X_) \to \cdots,

where X_ is taken to be the empty set.
The group
:
,X_)

is free abelian, with generators that can be identified with the n -cells of X . Let e_^ be an n -cell of X , and let \chi_^: \partial e_^ \cong \mathbb^ \to X_ be the attaching map. Then consider the composition
:
\chi_^:
\mathbb^ \, \stackrel \,
\partial e_^ \, \stackrel} \,
X_ \, \stackrel \,
X_ / \left( X_ \setminus e_^ \right) \, \stackrel \,
\mathbb^,

where the first map identifies \mathbb^ with \partial e_^ via the characteristic map \Phi_^ of e_^ , the object e_^ is an (n - 1) -cell of ''X'', the third map q is the quotient map that collapses X_ \setminus e_^ to a point (thus wrapping e_^ into a sphere \mathbb^ ), and the last map identifies X_ / \left( X_ \setminus e_^ \right) with \mathbb^ via the characteristic map \Phi_^ of e_^ .
The boundary map
:
d_: ,X_) \to ,X_)

is then given by the formula
:
^) = \sum_ \deg \left( \chi_^ \right) e_^,

where \deg \left( \chi_^ \right) is the degree of \chi_^ and the sum is taken over all (n - 1) -cells of X , considered as generators of ,X_) .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「cellular homology」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.